403. Frog Jump - LeetCode Wiki (2025)

403. Frog Jump - LeetCode Wiki (1)

Description

A frog is crossing a river. The river is divided into some number of units, and at each unit, there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.

Given a list of stonespositions (in units) in sorted ascending order, determine if the frog can cross the river by landing on the last stone. Initially, the frog is on the first stone and assumes the first jump must be 1 unit.

If the frog's last jump was k units, its next jump must be either k - 1, k, or k + 1 units. The frog can only jump in the forward direction.

Example 1:

Input: stones = [0,1,3,5,6,8,12,17]Output: trueExplanation: The frog can jump to the last stone by jumping 1 unit to the 2nd stone, then 2 units to the 3rd stone, then 2 units to the 4th stone, then 3 units to the 6th stone, 4 units to the 7th stone, and 5 units to the 8th stone.

Example 2:

Input: stones = [0,1,2,3,4,8,9,11]Output: falseExplanation: There is no way to jump to the last stone as the gap between the 5th and 6th stone is too large.

Constraints:

  • 2 <= stones.length <= 2000
  • 0 <= stones[i] <= 231 - 1
  • stones[0] == 0
  • stonesis sorted in a strictly increasing order.

Solutions

Solution 1: Hash Table + Memoization

We use a hash table $pos$ to record the index of each stone. Next, we design a function $dfs(i, k)$, which means that the frog jumps from the $i$-th stone and the last jump distance is $k$. If the frog can reach the end, the function returns true, otherwise it returns false.

The calculation process of function $dfs(i, k)$ is as follows:

If $i$ is the index of the last stone, the frog has reached the end, and return true;

Otherwise, we need to enumerate the frog's next jump distance $j$, where $j \in [k-1, k, k+1]$. If $j$ is a positive integer and the hash table $pos$ exists the position $stones[i] + j$, then the frog can choose to jump $j$ units on the $i$-th stone, if $dfs(pos[stones[i] + j], j)$ returns true, the frog can successfully jump to the end from the $i$-th stone, and we can return true.

The enumeration is over, indicating that the frog cannot choose the appropriate jump distance on the $i$-th stone to jump to the end, so we return false.

In order to prevent repeated calculations in the function $dfs(i, k)$, we can use memoization, record the result of $dfs(i, k)$ in an array $f$, and assign $f[i][k]$ each time the function $dfs(i, k)$ returns result, and return $f[i][k]$ directly when encountering $dfs(i, k)$ next time.

The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Where $n$ is the number of stones.

 1 2 3 4 5 6 7 8 91011121314
class Solution: def canCross(self, stones: List[int]) -> bool: @cache def dfs(i, k): if i == n - 1: return True for j in range(k - 1, k + 2): if j > 0 and stones[i] + j in pos and dfs(pos[stones[i] + j], j): return True return False n = len(stones) pos = {s: i for i, s in enumerate(stones)} return dfs(0, 0)
 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334
class Solution { private Boolean[][] f; private Map<Integer, Integer> pos = new HashMap<>(); private int[] stones; private int n; public boolean canCross(int[] stones) { n = stones.length; f = new Boolean[n][n]; this.stones = stones; for (int i = 0; i < n; ++i) { pos.put(stones[i], i); } return dfs(0, 0); } private boolean dfs(int i, int k) { if (i == n - 1) { return true; } if (f[i][k] != null) { return f[i][k]; } for (int j = k - 1; j <= k + 1; ++j) { if (j > 0) { int h = stones[i] + j; if (pos.containsKey(h) && dfs(pos.get(h), j)) { return f[i][k] = true; } } } return f[i][k] = false; }}
 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627
class Solution {public: bool canCross(vector<int>& stones) { int n = stones.size(); int f[n][n]; memset(f, -1, sizeof(f)); unordered_map<int, int> pos; for (int i = 0; i < n; ++i) { pos[stones[i]] = i; } function<bool(int, int)> dfs = [&](int i, int k) -> bool { if (i == n - 1) { return true; } if (f[i][k] != -1) { return f[i][k]; } for (int j = k - 1; j <= k + 1; ++j) { if (j > 0 && pos.count(stones[i] + j) && dfs(pos[stones[i] + j], j)) { return f[i][k] = true; } } return f[i][k] = false; }; return dfs(0, 0); }};
 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334
func canCross(stones []int) bool { n := len(stones) f := make([][]int, n) pos := map[int]int{} for i := range f { pos[stones[i]] = i f[i] = make([]int, n) for j := range f[i] { f[i][j] = -1 } } var dfs func(int, int) bool dfs = func(i, k int) bool { if i == n-1 { return true } if f[i][k] != -1 { return f[i][k] == 1 } for j := k - 1; j <= k+1; j++ { if j > 0 { if p, ok := pos[stones[i]+j]; ok { if dfs(p, j) { f[i][k] = 1 return true } } } } f[i][k] = 0 return false } return dfs(0, 0)}
 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627
function canCross(stones: number[]): boolean { const n = stones.length; const pos: Map<number, number> = new Map(); for (let i = 0; i < n; ++i) { pos.set(stones[i], i); } const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(-1)); const dfs = (i: number, k: number): boolean => { if (i === n - 1) { return true; } if (f[i][k] !== -1) { return f[i][k] === 1; } for (let j = k - 1; j <= k + 1; ++j) { if (j > 0 && pos.has(stones[i] + j)) { if (dfs(pos.get(stones[i] + j)!, j)) { f[i][k] = 1; return true; } } } f[i][k] = 0; return false; }; return dfs(0, 0);}
 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647
use std::collections::HashMap;impl Solution { #[allow(dead_code)] pub fn can_cross(stones: Vec<i32>) -> bool { let n = stones.len(); let mut record = vec![vec![-1; n]; n]; let mut pos = HashMap::new(); for (i, &s) in stones.iter().enumerate() { pos.insert(s, i); } Self::dfs(&mut record, 0, 0, n, &pos, &stones) } #[allow(dead_code)] fn dfs( record: &mut Vec<Vec<i32>>, i: usize, k: usize, n: usize, pos: &HashMap<i32, usize>, stones: &Vec<i32>, ) -> bool { if i == n - 1 { return true; } if record[i][k] != -1 { return record[i][k] == 1; } let k = k as i32; for j in k - 1..=k + 1 { if j > 0 && pos.contains_key(&(stones[i] + j)) && Self::dfs(record, pos[&(stones[i] + j)], j as usize, n, pos, stones) { record[i][k as usize] = 1; return true; } } record[i][k as usize] = 0; false }}

Solution 2: Dynamic Programming

We define $f[i][k]$ to be true if and only if it is possible to reach stone $i$ with last jump of size $k$. Initially $f[0][0] = true$, and all other elements of $f$ are false.

We can determine the value of $f[i][k]$ for all $i$ and $k$ using a double loop. For each possible jump size $k$, we look at the stones we could have jumped from: $i-k$, $i-k+1$, $i-k+2$. If any of these stones exist and if we can reach them with a last jump of size $k-1$, $k$, or $k+1$, then we can reach stone $i$ with a last jump of size $k$.

If we can reach the last stone, the answer is true. Otherwise, the answer is false.

The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Where $n$ is the number of stones.

 1 2 3 4 5 6 7 8 91011121314
class Solution: def canCross(self, stones: List[int]) -> bool: n = len(stones) f = [[False] * n for _ in range(n)] f[0][0] = True for i in range(1, n): for j in range(i - 1, -1, -1): k = stones[i] - stones[j] if k - 1 > j: break f[i][k] = f[j][k - 1] or f[j][k] or f[j][k + 1] if i == n - 1 and f[i][k]: return True return False
 1 2 3 4 5 6 7 8 91011121314151617181920
class Solution { public boolean canCross(int[] stones) { int n = stones.length; boolean[][] f = new boolean[n][n]; f[0][0] = true; for (int i = 1; i < n; ++i) { for (int j = i - 1; j >= 0; --j) { int k = stones[i] - stones[j]; if (k - 1 > j) { break; } f[i][k] = f[j][k - 1] || f[j][k] || f[j][k + 1]; if (i == n - 1 && f[i][k]) { return true; } } } return false; }}
 1 2 3 4 5 6 7 8 910111213141516171819202122
class Solution {public: bool canCross(vector<int>& stones) { int n = stones.size(); bool f[n][n]; memset(f, false, sizeof(f)); f[0][0] = true; for (int i = 1; i < n; ++i) { for (int j = i - 1; j >= 0; --j) { int k = stones[i] - stones[j]; if (k - 1 > j) { break; } f[i][k] = f[j][k - 1] || f[j][k] || f[j][k + 1]; if (i == n - 1 && f[i][k]) { return true; } } } return false; }};
 1 2 3 4 5 6 7 8 9101112131415161718192021
func canCross(stones []int) bool { n := len(stones) f := make([][]bool, n) for i := range f { f[i] = make([]bool, n) } f[0][0] = true for i := 1; i < n; i++ { for j := i - 1; j >= 0; j-- { k := stones[i] - stones[j] if k-1 > j { break } f[i][k] = f[j][k-1] || f[j][k] || f[j][k+1] if i == n-1 && f[i][k] { return true } } } return false}
 1 2 3 4 5 6 7 8 9101112131415161718
function canCross(stones: number[]): boolean { const n = stones.length; const f: boolean[][] = new Array(n).fill(0).map(() => new Array(n).fill(false)); f[0][0] = true; for (let i = 1; i < n; ++i) { for (let j = i - 1; j >= 0; --j) { const k = stones[i] - stones[j]; if (k - 1 > j) { break; } f[i][k] = f[j][k - 1] || f[j][k] || f[j][k + 1]; if (i == n - 1 && f[i][k]) { return true; } } } return false;}
 1 2 3 4 5 6 7 8 91011121314151617181920212223242526
impl Solution { #[allow(dead_code)] pub fn can_cross(stones: Vec<i32>) -> bool { let n = stones.len(); let mut dp = vec![vec![false; n]; n]; // Initialize the dp vector dp[0][0] = true; // Begin the actual dp process for i in 1..n { for j in (0..=i - 1).rev() { let k = (stones[i] - stones[j]) as usize; if k - 1 > j { break; } dp[i][k] = dp[j][k - 1] || dp[j][k] || dp[j][k + 1]; if i == n - 1 && dp[i][k] { return true; } } } false }}
403. Frog Jump - LeetCode Wiki (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Kelle Weber

Last Updated:

Views: 6033

Rating: 4.2 / 5 (73 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.